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A SECTORIZED STRETCHED GRIDMESH FOR 
MODELING SAN FRANCISCO BAY AND SHELF CIRCULATION

Kurt W. Hess
Marine Environmental Assessment Division 
Assessment and Information Services Center 
National Environmental Satellite, Data, and 
Information Service, Washington, DC 20235

ABSTRACT. A numerical circulation model gridmesh 
with stretched coordinates is developed and applied 
to San Francisco Bay and the adjacent shelf seaward 
to 50 km from Pt. Arena in the north to Pt. Sur in 
the south. The new mesh has variable grid widths, 
which are created by transforming (stretching) the 
x and y coordinates. The transformation of either 
axis can be applied in two sectors so that grid 
cells inside the Bay are small, and cells along the 
outer coast are larger. The transformed mesh is 
very useful because (1) it provides high resolution 
inside the Bay where it is needed, and (2) the 
larger coastal grid cells will significantly reduce 
computer running time.

1. INTRODUCTION
The Marine Environmental Assessment Division has continued 

development and testing of the general three-dimensional free- 
surface numerical circulation model MECCA, (Model for Estuarine 
and Coastal Circulation Assessment), originally described by Hess 
(1985a). Models such as this have become important tools for 
studying the physical dynamics of estuaries and exploring the 
consequences of various human uses of the resource. MECCA uses 
finite difference approximations to the momentum, mass, 
continuity, and concentration equations to simulate three- 
dimensional water currents and salinities at 10 levels in a 
shallow water domain at time scales ranging from a few minutes to 
several months, and space scales ranging from a few kilometers to 
a few hundred kilometers. A user's guide (Hess, 1985b) is 
available for the program.
The model was first applied to Chesapeake Bay to simulate tidal 

and density-driven currents, and to study the reduction in 
salinity in the Bay during the high river discharge conditions 
following the passage of hurricane Agnes over the watershed in
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1972 (Hess, 1985a). MECCA was subsequently applied to a larger 
domain which includes Chesapeake Bay and a portion of the local 
continental shelf (Hess, 1986). Circulation in the Bay-shelf 
region is important for assessing the biological productivity of 
the estuary. Wind forecasts and satellite-derived temperatures 
have been used to provide input to the circulation model, which 
generated currents that in turn were used to simulate 
trajectories of hypothetical biological drifters and blue crab 
larvae (Johnson et al., 1986; 1987).
Experience in modeling the Chesapeake Bay-shelf region has 

shown that finer gridmesh resolution is highly desirable for the 
part of the model domain covering Chesapeake Bay, since the land 
and channel features are on the order of only a few kilometers.
On the continental shelf, the grids can be much larger, since we 
are not interested in as much detail. The most efficient way to 
achieve this variation in grid resolution is by the use of a 
stretched coordinate system (Sheng, 1983).
The San Francisco Bay and the adjacent coastal region has been 

selected as the first region of study in a proposed simulation of 
the transport and fate of the larval stages of Dungeness crab.
It is expected that some of the techniques developed in Johnson 
et al. (1986, 1987) for the blue crab can be directly applied to 
this west coast crab fishery.

2. BACKGROUND DATA AND MODELS FOR SAN FRANCISCO BAY
Since San Francisco Bay is located within a rapidly-growing and 

environmentally-conscious area, there is a wealth of oceano
graphic data on the estuary. Descriptions of San Francisco Bay 
environmental studies are given in two overviews of the areas, 
one edited by Conomos (1979) and another edited by Cloern and 
Nichols (1985) . A unique summary of the impacts of oceanic and 
weather events on the region during 1985 is presented by 
Dowgiallo et al., 1986.
The physical oceanography of the area has also been well- 

studied. Analyses of the tides in the Bay are given by Walters 
(1982), Walters and Gartner (1985), and Cheng and Gartner (1935). 
A discussion of the non-tidal current null zone is given in 
Peterson et al. (1975). A review of the NOAA circulation survey
of the Bay is given in Welch et al. (1985). Background 
information on the west coast shelf can be found in the 
preliminary published results of the Coastal Ocean Dynamics 
Experiment (CODE) (American Geophysical Union, 1987).

Several numerical modeling studies of San Francisco Bay have 
been carried out by R. Cheng and his associates at the U.S. 
Geological Survey in Menlo Park, California. A study of the two-
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dimensional (horizontal) Lagrangian residual circulation in South 
San Francisco Bay using finite difference techniques was 
presented in Cheng and Casulli (1982). A model of the horizontal 
tidal and residual circulation in the whole Bay was reported by 
Cheng and Walters (1982), who used a finite element approach. A 
two-dimensional modeling study of currents and salinity 
distribution in Suisun Bay is given in Smith and Cheng (1985). A 
discussion of Eulerian-Lagrangian techniques for solving the 
convection diffusion equation is given in Cheng et al. (1984).

The present modeling study differs from the above studies in 
two ways: (1) it is designed to simulate flow in the Bay, Gulf of 
the Farralones and beyond, rather than to study just the 
circulation inside the Bay proper, and (2) it employs a three- 
dimensional numerical circulation model.

3. GRID COORDINATE STRETCHING
Variable grid sizes can be obtained by stretching a square- celled grid in one or more directions by the use of a coordinate 

transformation. Axis transformation to produce variable-width 
cells is preferable to the direct use of unequally spaced points 
because the latter will reduce the accuracy of spacially centered 
finite-difference approximations from second order to first 
order (Roach, 1972).

In a uniform mesh with cells of size AL, the numerical 
solution is generated in modeled horizontal space (r,s) which is 
related to geographic space (x,y) by

x = rAL and y = sAL (3.1)
so that x and r have a simple linear relationship. By contrast, 
variable grid sizes in real space are generated by applying a 
nonlinear stretching transformation to get x, although the 
numerical calculations are still performed on a uniform mesh.

3.1 The MECCA Uniform Gridmesh
A brief explanation of MECCA'S present, uniform numerical 

gridmesh is useful to introduce the discussion. The mesh 
consists of square cells with certain designated cells 
representing water. The gridmesh represents horizontal space 
(x,y) as a flat plane, tangent to the earth's surface. The 
tangent plane approximation is valid as long as the horizontal 
extent of the mesh covers a distance not more that a few percent 
of the earth's radius (1 percent is 63.71 km).
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Figure 1. Representation of the model gridmesh, its orientation 
with respect to the earth's surface, and the latitude-longitude 
reference point.

The mesh is stored in a data file as a matrix whose rows (index 
M) increase downward representing the x direction, and whose 
columns (index N) increase to the right representing the y 
direction. The mesh is referenced to the earth's surface by 
specifying the latitude and longitude of the lowest corner of a 
specific cell, designated (MC,NC), as shown in Fig. 1. The 
subscript c refers to the Coriolis parameter, which is computed 
from the latitude of this point. The lowest corner of a cell is 
defined as the one closest to the origin of the x,y (or M,N) 
coordinate system. A rotation angle, 9, indicates how much 
clockwise rotation of the mesh is needed to align it with the 
geographic coast.

The numerical calculations for the transformed system are 
performed on a gridmesh essentially identical to the one 
described above. The influence of the axis transformations 
appears in coefficients multiplying the finite-difference 
equivalents of the horizontal derivatives, as explaned in the 
next section.

3.2 The Transformation Function

The generalized transformation we use has been successfully 
applied to a model of Mobile Bay and Sound (Sheng, 1983; 
Schmalz, 1985), and is

(3.2)x = a + brc
where x is the coordinate in real space, and r is the coordinate 
in the uniform (model) domain. There is an analogous 
transformation between the y and s coordinates. In the following
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equations, partial differentiation will be indicated when the 
dependent variable is followed by a subscripted comma and the 
independent variable. Therefore, using the transformation (3.2), 
we get

f,x = Ccbxc-1]-1f/r = exf,r (3.3)

The general strategy for applying the transformation to the 
system of equations is to substitute the expression (3.3) for the 
x-derivative wherever it appears in the hydrodynamic equations. 
The y derivative is treated analogously.

Consider the transformation applied to a single zone of the x 
axis with decreasing grid sizes. Along the r axis there are n 
equally-spaced intervals corresponding to integral values r = r-]_, 
r2, . . . rm. Note that n = rm - r±. Along the x axis there is 
an equal number of unequally-spaced intervals between points X 
and X', as shown in Fig. 2.

For this zone there are three unknown parameters: a, b, and c. 
Thus three conditions are needed to uniquely determine the 
stretching function. Two obvious ones are found by applying 
(3.2) to the end points. However, there is no obvious third 
condition. More information is needed to complete the solution.

The approach taken here is based on the user's selection of a 
maximum gridcell size, Dmax, and a minimum gridcell size, 
to apply throughout the zone. This gives some indication of how 
many cells will be needed to cover the interval. For this 
example, with decreasing cell size, the limiting size for the 
first cell, Dp, is the maximum gridcell size, and the limiting 
size for the last cell, DL, is the minimum gridcell size, i.e.

dF = Dmax dL = °min (3.4)

<-----(stretching zone)------ >

X X*
+-------- +-----------+------- +----- f----+----- > x
0 Xl x2 *m-l xm
+-------h------ +------ +------ +------ +-------- > r
0 ri r2 rm

Figure 2. Schematic of a simple, single-zone coordinate 
transformation between the x and r axes with decreasing grid 
sizes. Here any point Xj_ is related to rj_ by an equation like 
(3.2).
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Then, for the largest interval in our example (Fig. 2), the 
following must hold:

x2 - Xi < Df (3.5)

and for the smallest interval:

xm ” xm-l — °L (3.6)

It can be shown that (3.5) is met if

x,r = Dp at r = rl (3.7a)

and (3.6) is met if

XfT = Dl at r = rm (3.7b)

These become two of our required conditions. The third condition 
needed to determine the stretching function was mentioned above, 
and is simply the application of (3.2) to the initial point

x = X at r = r1 (3.7c)

Since three conditions have been specified, the second end 
condition, x = X' at r = rm, can only be met approximately, since 
rm is an integer. The actual value of the end point produced by 
the transformation is

Xe = [a + brmc] (3.8)

The method of solution for a, b, and c thus requires testing
values of n in the range

2 < n < 2(X' - X)  (D-jnajjDjjjj^) / ^ (3.9)

and selecting rm = r^ + n so that

E = X' - X, (3.10)
is a minimum. By varying X, D-^x' an<^ Dmin' value °f E can
usually be made as small as desired. The three unknowns are then 
evaluated as

c = 1 + ln(DF/DL)/ln(rm/r1) (3.11a)
b = DF/fcri0-1) (3.11b)

a = X - br^c (3.11c)

The values of a, b, and c can be uniquely determined by (3.11) 
unless rx = 0, which occurs in the first zone. This problem is
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easily overcome by making the first zone one of uniform cell 
sizes (see Sections 3.3 and 3.4).

3.3 Transformation for Increasing or Uniform Widths
The above discussion has assumed that the grid size was 

decreasing in the x direction, but there can also be increasing 
or uniform width zones. For increasing grid sizes,

dF = Dmin dL = Dmax (3.12)
and (3.7a,b,c) and (3.11a,b,c) still hold.

It should be noted that in general it is not possible to 
generate a transformation giving a sequence of widths symmetrical 
around an arbitrary point in the x axis. Normally, however, 
approximate symmetry will hold if the widths of the zones are 
equal.
A special case arises when the grid widths are increasing and 

Dmax/Dmin — 5* To force the widths to be more nearly symmetrical 
to those with decreasing grid width, the zone is subdivided into 
two new zones; the border between the two is arbitrarily defined 
to be at x = X + 0.4(X' - X), and the slope condition at the 
boundary is forced to be xr = 2Dp.

For the case of uniform widths, the grid cell size D (either 
Dmax or °min) i-s first selected. Then the number of cells is

n = maximum of ( 1 , I{(X' - X)/D}} (3.13)
where I{} is the integer closest to the value of the argument.
For this case,

c = 1 (3.14a)
b = D (3.14b)
a = X - br;j_ (3.14c)

3.4 Multizone Transformation
The stretching transformation along one axis is more useful 

when applied in a piecewise manner to allow, for example, a 
region of decreasing grid spacing to precede a region with 
increasing grid spacing. In this case, the axis is divided into 
zones denoted by the subscript i, in each of which the 
transformation is
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(3.15)Xi = ai + b-^r 1
If i = 1, the values of a, b, and c can be selected as in the 
preceding section. Otherwise, there is a requirement for 
continuity of x and its first derivative with respect to r at the 
boundary between zones. Continuity of the function is satisfied 
if Xe from the previous zone'is taken for X. The derivative 
condition is automatically satisfied by (3.7a,b), since

(3.16)

3.5 Sectorizing

In general, the transformation along (for example) the x axis 
holds for all values of y in the domain. However, this need not 
be so. We will now develop the principles of applying one 
multizone transformation for a specified range of y values, 
called a sector, and another transformation to another sector of 
y values.

Consider a hypothetical estuary separated from the open coast 
by a narrow mouth, as shown in Fig. 3. The line y = y has been 
drawn parallel to the outer coastline through the mouth, and 
separates the modeled region (the area within 0 < x < xQ and 
0 < y < yQ) into two sectors. The sector closest to the origin 
is called Sector I and the other is called Sector II. In Sector 
I of this hypothetical estuary the grid cell widths in the y 
direction are uniform. But in Sector II there are three zones of 
varying cell widths: decreasing, uniform, and increasing. The 
position of the zones has been carefully chosen so that the 
uniform grids in each sector match at the bay mouth.

The model grid resulting from the transformation will be 
computationally advantageous because it will have a relatively 
small number of grids covering the coastal area in comparison 
with the number inside the estuary.

In the numerical scheme, which assigns coefficients ex in 
Sector I, and e’x in Sector II, there will be no computational 
problems in the x-direction flow because any given row will be in 
either one sector or the other. For y-direction flow, there will 
be no problems as long as at cells other than those at the mouth 
there is either a barrier or at least one row of land cells 
separating the sectors (to ensure zero velocity). Thus the 
necessity of an estuary physically separated from the coast is 
apparent.
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ZONE 1
ZONE 2

ZONE 3

SECTOR II

open coast

OL
0

SECTOR I

Figure 3. Hypothetical estuary connected to the open coast by a 
narrow mouth. The modeled region is to be contained within the 
space 0 < x < xQ and 0 < y < yQ. The line y = y* crosses the 
mouth and separates the sectors. Above the line in Sector II, an 
x-direction stretching transformation produces three zones of 
grid cells of varying widths. In the first zone, the widths are 
decreasing in the x direction; in the second zone, the widths are 
uniform; and in the third zone, the widths are increasing. Below 
the sector dividing line in Sector I, there is a single zone with 
uniform cell widths. Transformation in the y direction (not 
shown) is independent of the x-direction transformation.
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4. APPLICATION TO SAN FRANCISCO BAY AND SHELF
Consider the configuration of San Francisco Bay and the local 

shelf from Pt. Arena on the north to Pt. Sur in the south 
(Fig.4). The small area of the Bay and the vastness of the 
coastal section plus the existance of the narrow mouth make the 
area ideal for sectorized stretching.

4.1 Sectorizing Lines
The first step in the sectorizing process is to choose a sector 

dividing line; in the case of San Francisco Bay one was selected 
which runs across the Golden Gate along a line oriented 32.0° 
west of north (Fig. 4). This line is denoted A-A and was 
selected because (1) it is approximately parallel to the coast,
(2) it crosses the mouth near its narrowest point, (3) all of San 
Francisco Bay is landward, and (4) all of the coastal area, 
including Monterey Bay, is seaward. The modeled domain can then 
be chosen to enclose the coastal section bounded by Pt. Arena on 
the north and Pt. Sur on the south. The object is to find a 
sectorized transformation so that the Bay, in Sector I, has 
uniformly small grid sizes (of roughly the width of the entrance) 
for better resolution, and the coastal region, in Sector II, has 
grid widths varying along the coast so that a large portion of 
the coast can be covered.
After selecting the sector dividing line, we choose a line 

(B-B) for the northern boundary of the outer coastal region which 
(1) is normal to the sector dividing line A-A and (2) passes just 
north of Pt. Arena. The second normal line, C-C, passes through 
the coast just north of the Bay mouth. This is the common line, 
and will be the same distance from B-B in each sector. The third 
normal line, D-D, crosses the coast just south of Pt. Sur to form 
the southern boundary. The distance from the northern boundary 
(B-B) to the common line (C-C) is approximately 90 nautical miles 
(nmi), and the distance from B-B to the southern boundary just 
below Pt. Sur (D-D) is approximately 194 nmi (Fig. 4). The exact 
position of these lines can be adjusted to locate the common line 
more precisely.

We need to establish northern and southern boundaries for the 
Bay itself. With the chosen orientation, the distance from the 
northern boundary (B-B) to the northern portion of San Pablo Bay 
(E-E) is about 74 nmi, and from the northern portion of San Pablo 
Bay to the southern section of south San Francisco Bay (F-F) is 
46 nmi. The landward extent of the Bay riverine system is taken 
to be eastward of the sector dividing line by about 40 nmi, at 
line G-G. The coastal boundary (H-H) can be selected to suit the 
modeler's purpose. We take it to lie 80 nmi west of A-A.
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Figure 4. Base map of San Francisco Bay and the local shelf, 
showing the position of the sector dividing line (A-A), the 
northern mesh boundary (B-B) , the common line (C-C), and the 
southern mesh boundary line (D-D). The eastern boundary line is 
G-G, and the 3ay is bounded by E-E and F-F. The coastal boundary 
is at H-H.
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4.2 Generation of the Gridmesh
The next step in generating the sectorized mesh is the 

selection of maximum and minimum grid cell sizes. Since our 
computer program, MECCA, presently has maximum array sizes of 40 
by 60 grids, the outer coast width of 194 nmi can easily be 
covered by 20 cells with a 10 nmi maximum cell size. A minimum 
grid cell size of 1.5 nmi was chosen because it is roughly the 
width of the Golden Gate, and the Bay can be covered by 31 cells 
of this size in the north-south direction.
The transformation functions are generated by a computer 

program (Appendix) using the methods described in Chapter 3. We 
start with the y axis transformation. The cell sizes Dmax and 
Dmin are required input.

The input data for each zone consists of the selection of
1. the type of variation (increasing, uniform, or 

decreasing), and
2. the target axis value for the end of the zone (Y1).

For the first zone, the value of s corresponding to Y is also 
required, and if the zone has uniform grid sizes, the size (Dmax 
or Dm-Ln) must be selected. The output for each zone is the 
actual end point [Ye], the grid coordinate for the end [s], and 
of course a, b, and c.
We generate the attributes of Sector II first, because it's 

more complex than Sector I. All distances are in nautical miles. 
For the first zone the set of input values is (uniform, Y'=60, 
Dmax) Ya at s=0 and the results are [Ye=60, s=6] (the
generated values of y corresponding to boundaries between all 
grid cells in all sectors are shown in Table 1). The second 
zone, with the input (decreasing, Y'=90), gives the results 
[Ye=91.476, s=14] for the distance from B-B to C-C. This is 
close to our estimate of 90 nmi, so we can select this line to be 
the common line, C-C; the line B-B is then relocated to be 91.476 
nmi to the north.

Continuing, the next zone input is (uniform, Y'=93) and results 
in a single grid at the mouth with [Ye=92.976, s=15]. The next 
zone (increasing, Y'=122) results in [Ye=121.657, s=23] (actually 
two zones are needed to cover this interval). The last zone has 
input (uniform, Y'=194), giving [Ya=191.657, s=30]. The values 
of a, b, and c for all zones in this and the other sectors are 
given in Table 2.

Sector I is to consist entirely of uniform grid cells in the y 
direction. In order for the sectors to match, the common line 
C-C must have the same y-value in each sector. In Sector II, the 
line C-C is at y = 91.476 (s = 14). A uniform grid for Sector I

12



Table 1. Grid distances in nautical miles for the untrans
formed x and y axes. D is the grid size.

Y-Sector II Y-Sector I X-Sector I
n Y D Y D x D

0 0.000 70.476 0.000
1 10.000 10.000 71.976 1.500 1.500 1.500
2 20.000 10.000 73.476 1.500 3.000 1.500
3 30.000 10.000 74.976 1.500 4.500 1.500
4 40.000 10.000 76.476 1.500 6.000 1.500
5 50.000 10.000 77.976 1.500 7.500 1.500
6 60.000 10.000 79.476 1.500 9.000 1.500
7 68.419 8.419 80.976 1.500 10.500 1.500
8 74.520 6.100 82.476 1.500 12.000 1.500
9 79.124 4.604 83.976 1.500 13.500 1.500

10 82.710 3.586 85.476 1.500 15.000 1.500
11 85.574 2.864 86.976 1.500 16.500 1.500
12 87.909 2.335 88.476 1.500 18.000 1.500
13 89.846 1.937 89.976 1.500 19.500 1.500
14 91.476 1.630 91.476 1.500 21.000 1.500
15 92.976 1.500 92.976 1.500 22.500 1.500
16 94.601 1.624 94.476 1.500 24.000 1.500
17 96.489 1.888 95.976 1.500 25.500 1.500
18 98.665 2.176 97.476 1.500 27.000 1.500
19 101.152 2.487 98.976 1.500 28.500 1.500
20 103.975 2.824 100.476 1.500 30.000 1.500
21 107.711 3.735 101.976 1.500 31.500 1.500
22 113.337 5.627 103.476 1.500 33.000 1.500
23 121.657 8.320 104.976 1.500 34.500 1.500
24 131.657 10.000 106.476 1.500 36.000 1.500
25 141.657 10.000 107.976 1.500 37.500 1.500
26 151.657 10.000 109.476 1.500 39.000 1.500
27 161.657 10.000 110.976 1.500 40.500 1.500
28 171.657 10.000 112.476 1.500 42.118 1.618
29 181.657 10.000 113.976 1.500 43.989 1.871
30 191.657 10.000 115.476 1.500 46.142 2.154
31 116.976 1.500 48.611 2.468
32 118.476 1.500 51.426 2.815
33 119.976 1.500 55.145 3.719
34 121.476 1.500 60.731 5.586
35 122.976 1.500 69.021 8.290
36 79.021 10.000
37 89.021 10.000
38 99.021 10.000
39 109.021 10.000
40 119.021 10.000
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Table 2. Parameters used for the x and y direction trans
formations. Six place precision is needed to generate distances 
to the thousandth of nmi, as in Table 1.

X Direction
Sector Zone Length ai bi ci
I 1

2
3
4

27
5
3
5

0.000000E+00
0.325272E+02
0.447754E+02
-.280979E+03

0.150000E+01
0.427197E-06
0.124578E-20
0.100000E+02

0.100000E+01
0.507976E+01
0.144354E+02
0.100000E+01

Y Direction
Sector Zone Length ai bi ci
I 1 35 0.704760E+02 0.150000E+01 0.100000E+01

II 1
2
3
4
5
6

6
8
1
5
3
7

0.000000E+00
0.108425E+03
0.7047 64E+02
0.863770E+02
0.977347E+02
-.108343E+03

0.100000E+02
-. 445882E+03
0.150000E+01
0.645226E-03
0.193435E-11
0.100000E+02

0.100000E+01
-.123902E+01
0.100000E+01
0.340942E+01
0.961445E+01
0.100000E+01

is chosen so that Y = 91.476 - 14(1.50) = 70. 476 at s = 0. With
a total of 33 cells, the southern extent is at 119.976 nmi,(Ye)
which is enough to cover the whole Bay.

The stretching for the x direction requires only one sector.
We again chose 1.50 nmi as the minimum cell size and 10 nmi as 
the maximum. With this minimum, we set the eastern boundary 
(E-E) to be at X=0 at r=0. With the input (uniform, X'=40,
Dmin), A-A is at Xe=40.5 (r=27) to the west. In the next zone 
with input (increasing, Xk=70), the end is at [Xe=69.021, s=35]. 
The last zone of uniform cell sizes (uniform, x'=120) results in 
[Xe=119.021, s=40].

4.3 Latitude-Longitude Reference
As discussed in Section 3.1, the location and orientation of 

the mesh in reference to the earth's surface must be specified. 
After close inspection of the Golden Gate (Fig. 5), we position 
the line A-A (oriented 32° west of north) to pass close to Pt. 
Bonita, and the grid column, N = 15, to be approximately centered

14



Figure 5. Close up of the gridmesh in the vicinity of the Golden 
Gate. The sector dividing line, A-A, is positioned close to Pt. 
Bonita, and the common line (C-C) is at the lower side of the 
grid column representing the Bay mouth (N=15). The latitude- 
longitude reference point is at the lower corner (i.e. closest to 
N-l, M-l) of grid cell (N=15, M=27), near Pt. Diablo.
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on the Bay mouth. The mesh reference point (see Fig. 1) is then 
selected to be near Pt. Diablo at Nc=15, Mc=27, and latitude 37° 
49.415'N and longitude 122° 29.8076'W. The whole mesh and the 
coastline can now be drawn (Fig. 6).

4.4 The Transformation Function in MECCA
Consider the x-direction transformation which consists of I 

zones, each with a length (number of cells) of L-;. The distance, 
X]_, to the lower side of any cell, M, in the grid mesh is given 
by the following

bi(M-l)°i (4.1)*1 = ai +
where i is such that

i = 1 for M < Lx (4.2a)

i-1
< M < A4

for M > Lx (4.2b)

and I, Lj , bi' and c-l depend upon the sector, Table 2 showsai>the values used to get the distances in Table 1.
In the mesh, all cells in rows

1 < M — ^sector (4.3)
lie in Sector I. Other rows are in Sector II. Here, Msector=28'

4.5 Selection of Water Grids
The water grids are selected by placing a scaled plot of all 

grids in the mesh over Mercator projections of the Bay and shelf 
area. The NOAA navigation charts used are Numbers 18010, 18640, 
and 18680. The resulting water grid mesh is shown in Fig. 7.

5. OTHER CONSEQUENCES OF TRANSFORMING
5.1 Averaging
Another consequence of the stretching transformation is that 

spacial averaging in the finite difference scheme becomes more 
complicated. Consider the function f(x) defined over the 
interval Xa to Xb shown in Fig. 1. Suppose that f varies 
linearly and that we need to estimate f(x2) from its values at xx
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Figure 6. The grid mesh plotted over the California coastline in 
the region of San Francisco Bay.
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and x3. Then
f(x2) = [(x3 - x2)f(x1) + (x2 - xx)f (x3) ]/(x3 - x-l) (5.1)

or in the r coordinate system,
f2 = [(x3-x2)/(x3-x1)]f1 + [(x2-x1)/(x3-x1)]f3

= A;^ + A3f3 (5.2)
where A is the variable weighting factor. For uniform spacing,
A = 0.5, but for a general gridmesh, A(x,y) must be evaluated 
everywhere.

5.2 Explicit Time Step
For a square-grid mesh, Sobey (1970) has shown that a typical 

explicit numerical scheme has, for the linearized, frictionless, 
constant-depth (hQ) case, a limiting timestep (At) of

At < Ax/(2gh0)1/2 (5.3)

where Ax is the cell width. By examining the algebra used to 
derive (3.14), we find that for unequal grid widths, Ax andAy, 
the equivalent limiting timestep is

At < [(Ax-2 + Ay”2 }/2 ]-1/2/ (2gh0)1/2 (5.4)

Note that (5.4) reduces to (5.3) if Ax = Ay.

6. SUMMARY AND FUTURE PLANS
The above discussion shows that a grid transformation scheme 

can be applied successfully to a coastal region. The process 
involves much trial and error, but the outline of the procedure 
remains the same. The crucial steps are (1) selection of the 
sectorizing line, (2) selection of the boundary and common lines, 
(3) chosing the maximum and minimum grid sizes to give the best 
fit to the distances, and (4) aligning the grid with local 
features. These were completed successfully for San Francisco 
Bay.
MECCA has been recoded to accomodate variable cell sizes and is 

now being tested. One test will be to compare tides and currents 
with the older version (Version 3.0) to those generated with the 
new (Version 4.0), using the stretching transformation but with 
uniform cell sizes. Another test will be to compare tides and 
currents from Version 3.0 with Version 4.0 and variable grids.
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Future applications involve generating the sectorized stretched 
mesh for Chesapeake Bay and the adjacent shelf. For San 
Francisco Bay, the bathymetry needs to be taken from the charts. 
Once the model is calibrated and verified, the model can be used 
to simulate conditions using historical buoy data for winds, 
currents, and water density. Comparisons can also be made with 
satellite-derived sea surface temperatures.
A longer-term project involves the study of Dungeness crab 

larval drift along the west coast between California, Oregon, and 
Washington. Circulation modeling may require an extended grid 
network, equations in spherical coordinates, and a sheared 
coordinate system.

7. REFERENCES
American Geophysical Union, 1987: Special Section: Coastal Ocean 

Dynamics Experiment (CODE), J. Geophvs. Res., 92,
1455 - 1885.

Cheng, R. T., and V. Casulli, 1982: On Lagrangian residual 
currents with applications in South San Francisco Bay, 
California. Wat. Resour. Res.. 18, 1652 - 1662.

Cheng, R. T., V. Casulli, and S. N. Milford, 1984: Eulerian-
Lagrangian solution of the convective-dispersion equation in 
natural coordinates. Wat. Resour. Res.. 20, 944 - 952.

Cheng, R. T., and J. W. Gartner, 1985: Harmonic analysis of tides and tidal currents in South San Francisco Bay, California. 
Est. Coast. Shelf Sci., 21, 57 - 74.

Cheng, R. T. , and R. A. Walters, 1982: Modelling of estuarine
hydrodynamics and field data requirements. Finite Elements 
in Fluids. 4, 89 - 108.

Cloern, J. E., and F. H. Nichols (eds.), 1985: Temporal Dynamics 
of an Estuarv: San Francisco Bay. Junk Publishers, Boston, 
237 pp.

Conomos, T. J. (ed.), 1979: San Francisco Bay - the Urbanized 
Estuarv. Pacific Div., American Assn. Adv. Sci.,
San Francisco, Ca, 493 pp.

Dowgiallo, M. J., I. C. Sheifer, F. G. Everdale, M. C. Predoehl, 
K. B. Pechman, S. Z. Green, K. W. Hess, and R. P. Stumpf, 
1986: Marine Environmental Assessment: San Francisco Bay, 
1985 Annual Summary, 122 pp.

20



Hess, K. W., 1985a: Assessment Model for Estuarine Circulation 
and Salinity. NOAA Technical Memorandum NESDIS AISC 3, 
National Environmental Satellite, Data, and Information 
Service, NOAA, U.S. Department of Commerce, 39 pp.

___, 1985b: User's guide to running MECCA on the AISC VAX 11/750
and the DAMUS UNIVAC 1100. National Environmental 
Satellite, Data, and Information Service, NOAA, U.S. 
Department of Commerce, 40 pp.

___, 1986: Numerical Model of Circulation in Chesapeake Bay and
the Continental Shelf. NOAA Technical Memorandum
NESDIS AISC 6, National Environmental Satellite, Data, and
Information Service, NOAA, U.S. Department of Commerce,
47 pp.

Johnson, D. F., K. W. Hess, and P. J. Pytlowany, 1986:
Interdisciplinary synoptic assessment of Chesapeake Bay and 
the adjacent shelf. NOAA Technical Memorandum NESDIS AISC 5, 
National Environmental Satellite, Data, and Information 
Service, NOAA, U.S. Department of Commerce, 90 pp.

___, 1987: Circulation modeling as an aid to management of the
blue crab fishery in Chesapeake Bay. Proceedings, Estuarine 
and Coastal Management: Tools of the Trade (in press).

Peterson, D. H., T. J. Conomos, W. W. Broenkow, and P. C.
Doherty, 1975: Location of the non-tidal current null zone 
in northern San Francisco Bay. Est. Coast. Mar. Sci., 3, 
1-11.

Roache, P. J., 1972: Computational Fluid Dynamics. Hermosa 
Publishers, Albuquerque NM, 434 pp.

Schmalz, R. A., 1985: Numerical model investigation of
Mississippi Sound and adjacent areas. U. S. Army Corps of 
Engineers, Coastal Engineering Research Center Miscellaneous 
Paper CERC-85-2, 230 pp plus appendices.

Sheng, Y. P., 1983: Mathematical modeling of three-dimensional
coastal currents and sediment dispersion: model development 
and application. U. S. Army Corps of Engineers, Coastal 
Engineering Research Center Tech. Report CERC-83-2, 288 pp.

Smith, L. H., and R. T. Cheng, 1985: Tidal and tidally-averaged 
circulation characteristics of Suisun Bay, California.
(Submitted to Wat. Resour. Res.1

21



Sobey, R. J., 1970: Finite-difference schemes compared for wave- 
deformation characteristics in mathematical modeling of two- 
dimensional long-wave propagation. U.S. Army Corps of 
Engineers, Coastal Engineering Research Center Technical 
Memorandum 32, 29 pp.

Walters, R. A., 1982: Low-frequency variations in sea level and 
currents in South San Francisco Bay. J. Phvs. Oceanog.. 12, 
658 - 668.

___, and J. W. Gartner, 1985: Subtidal sea level and current
variations in the northern reach of San Francisco Bay. Est. 
Coast. Shelf Sci.. 23, 17 - 321

Welch, J. M., J. W. Gartner, and S. K. Gill, 1985: San Francisco 
Bay area circulation survey: 1979-1980. National Ocean 
Service Oceanographic Circulation Survey Rept. 7, 180 pp.

22



APPENDIX. Computer Program Listing
The following is a listing of a computer program designed to 
calculate variable grid distances and the stretching parameters 
a, b, and c given the maximum and minimum grid sizes, and initial 
x distance, and intermediate zone boundary distances.

PROGRAM SGRIDX (STRETCHED GRID)
JULY 13. 1986 K.W. HESS MEAD VAX 11/730
PURPOSE - TO GENERATE GRID LINES

USING THE FORM: X = A + 3*R**C 
OR R - ( ( X-A)/B>**< I/O
TO COMPILE: F SGRID

DI3L0AD SGRID T10
VARIABLES -

A1.B1.C1 = STRETCHING PARAMETERS 
DMAX.DMIN = MAXIMUM. MINIMUM GRID WIDTHS (IN X SPACE)

ALLOWED
IT = ZONE TYPE (1=DECREASE. 2=UNIF0RM. 3=INCREASE)

I ZONE = NUMBER OF PRESENT ZONE
JCALL = NUMBER OF SETS OF INPUT VALUES (NO. OF ZONES 

MAY 3E LARGER)
MCUM = CUMULATIVE GRIDS TO THE PRESENT ZONE 

MS = NUMBER OF CELLS IN THE ZONE 
XT = TARGET DISTANCE FROM XO TO END OF ZONE 

XLAST = ACTUAL (COMPUTED) DISTANCE FROM XO TO END OF ZONE 
XI =» DISTANCE FROM XO TO START OF ZONE 
XO =» X VALUE AT R=0

CQMMQN/VALUES/XPLQT(200),USEG(200). MMAX. KSEG(50), XL(361)
COMMON/VALUE2/I ZONE. IU,A1,31.C1. AA(50). BB(50), CC(50). LEN(50) 
C3MM0N/CPLQT2/FTITLE.XPMIN.XPMAX.YPMIN,YPMAX.CHX,CHYc GET DMAX. DMIN 

100 TYPE 110
110 FORMAT('^STARTING SGRID. ENTER DMAX, DMIN : ')

READ(5,*)DMAX,DMIN 
IF(DMAX. LT. DMIN)GOTO 100 c INITIALIZE
MS=Q
MCUM=0
JCALL=0c ENTER X AT R=0 
TYPE 140

140 FORMAT('*AT R=0, X0= : ')
READ(5,♦)XO 
XPLQT(1> =X0 
XLAST=XQ
X1 = XQcc ENTER ZONE DATA 
I ZONE=*Q 

150 CONTINUE 
JCALL=JCALL+1 

160 TYPE 170,JCALL
FORMAT(IX, ' JCALL=*', 12, /, 3X. 'ENTER TYPE( 1=DECREASE, 2-UNIFORM, ' 170

1 /, S 3“INCREASE) OR 0=N0 MORE GRIDS : ')
READ(5.*)IT
IF( IT. EQ. 0 ) GOTO 300
IF( IT. LT. 1. OR. IT. GT. 3)G0T0 160
TYPE 190, XLAST

190 FORMAT( ' * X (FIRST) =*', F3. 3, '. ENTER X AT END : ')
READ(5, *)XT

SAVE INPUTS 
K.SEG( JCALL )= IT 
XL(JCALL)=XT 
GOTO(200, 220, 270), IT 23



C SEGMENT WITH DECREASING GRID SIZE
200 IF(I ZONE. GT. 0)GOTO 210 

C FIRST ZONE
XI=DMAX+XO
CALL SEGStDMAX,DMAX,XI,XI,MCUM,MS,XLAST)

210 X1=XLAST
DLAST=DMIN
CALL SEGS(DMAX,DMIN.XI,XT,MCUM.MS.XLAST)
GOTO 150

o o SEGMENT OF UNIFORM GRID SIZE 
220 IF<I ZONE. GT. 0)G0TQ 260 
230 TYPE 240
240 FORMAT( ' S ENTER 1 IF DFIRST=DMAX, 2 IF DFIRST=DMIN

READ(5,*>IFIRST
IF<IFIRST.LT 1.OR.IFIRST.GT.2)G0T0 230 
IF <IFIRST. EG. 1)DLAST=DMAX 
IF(IFIRST. EQ. 2)DLAST=DMIN 

260 X1=XLAST
CALL SEG3(DLAST,DLAST,XI,XT,MCUM,MS, XLAST)
GOTO 150 

C
C SEGMENT WITH INCREASING GRID SIZE
270 IF<IZONE. GT. 0)G0T0 290 

C FIRST ZONE
XI=DMIN+XO
CALL SEGStDMIN,DMIN, XI, XI,MCUM.MS, XLAST) ,
X1=XLAST

290 IF<DMAX/DMIN. GT. 5. OJGOTO 290 
DFIRST=DMIN 
DLAST=DMAX 
X1= XLAST
CALL 3EGS(DFIRST,DLAST,XI,XT,MCUM.MS.XLAST)
GOTO 150

290 DFIRST=DMIN
DLAST=DMIN*2.
X1=XLAST

C INTERMEDIATE TARGET X
XI=X1+ 40*(XT—X1)
CALL SEGS(DFIRST,DLAST, XI. XI,MCUM,MS, XLAST)

C SECOND SEGMENT
DFIRST=DLAST 
DLAST=DMAX 
X1=XLAST
CALL SEGS<DFIRST,DLAST, XI, XT.MCUM, MS. XLAST)
GOTO 150 

C
300 CONTINUE

JCALL=JCALL-1 
C PRINT OUT DATA

CALL PRINTX(XO.MS.MCUM, DMAX. DMIN, IFIRST.JCALL)
STOP
END

C
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SUBROUTINE SEGStDFIRST, CLAST, X1, XT, MCUM, MS, XLAST)

o JULY 1986

o PURPGSE - TO FIND THE GRID STRETCHING PARAMETERS (A, 3, C) o FOR DECREASING GRID SIZE. THE GRID STRETCHING ISo X = A + 3*R**C. THE GIVENS AREo DFIRST, CLAST, XI, XT, MCUM. THE OUTPUT IS MS, o XLAST, XPLOT.o VARIABLES -o DFIRST - GRID SIZE AT X=X1 p CLAST « GRID SIZE AT X=XLASTo MCUM - NUMBER OF PRECEEDING R-GRIDS o MS » NUMBER OF R-GRIDS IN THIS SEGMENTo XI = LOWER VALUE IN X-SPACE o XLAST = UPPER END VALUE IN X-SPACEo XT = TARGET VALUE FOR UPPER END X VALUE 
C0MM0N/VALUE3/XPLOT(200),USEG<200>, MMAX, KSEG< 30), XL(361)
COMMON/VALUE2/I ZONE, IU, Al, 31, Cl, AA<30>, 3B<50), CCC30), LENOO) 

o INCREMENT THE ZONE NUMBER  I ZONE31 ZONE*1

o CHECK FOR UNIFORM GRIDS  IF(DFIRST. EQ. DLAST5GQT0 150 

o ESTIMATE RE 
DEL= 1. OE+IO 
R 1 =MC'JM

 ME=MAX1(3. ,2. *(XT-X1)/SORT(DFIRST*DLAST))

o START LOOP HERE 
DO 120 M=2,ME 
R2=R1+FLQAT(M)
C = l.+ALQG10(DLAST/DFIRST)/ALQG10(R2/R1)

 IF(C. EQ. 0. 0. OR. C. EQ. 1. 0)GQT0 120 o UNBOUNDED VALUES n 3=DFIRST/<C*(R1)**<C-1. ))o a=»xi-b*ri**co X=A*B*R2**Co SOUNDED VALUES
B=OFIRST/(C*EXP < AMINI(80. , (C—1.0)*AL0G(R1))))
A=X1—S»£XP(AMIN1!SO. ,C»ALQG(R1))>
X=A+3*EXP(AMINI(SO. ,C*ALCGCR2)))
D=ABS(X-XT)
IF(D. GE. DEL)GOTO 130 
DEL=D 
XLAST=X 
MS=M 
A1 =A 
31=3 
C1=C 

120 CONTINUE 
130 CONTINUE 

GOTO 200
C UNIFORM GRIDS
150 MS=AMAX1(1.,(XT-X1>/DFIRST+O. 50)

XLAST=X1+QFIRST*FLQAT(MS>
31=DFIRST
A1 = X 1—31*FLQAT(MCUM)
Cl = t.
XLAST=X1+FLQAT(MS)*DFIRST 

C PRINT RESULT
200 CALL WRTSAV(MCUM. MS, XLAST)

MA-MCUM+t
mb=ma+ms-i
DO 220 M-MA.MB
XPLOT(M)=A1+B1*FLQAT(M)**C1
DX = XPLOT(M)-XPLOTCMAXO<1, M—l) )

220 CONTINUE 
C SAVE RESULTS

MCUM=MCUM+MS 
LEN(I ZONE)=MS 
RETURN 
END
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SUBROUTINE WRTSAV! MCUM,MS. X2)
COMMON/VALUE2/I ZONE. IU.Al.31.Cl.AA(50), 33(50). CC(50>. LEN(50)
AA<IZQNE)=A1
33 <I ZONE)=B1
CC( I ZONE)=C1
TYPE 100.MCUM,MS. X2

100 FORMATOX, 'MCUM*', 12. ' MS*', 13. ' X2='.F6. 2)
TYPE 110.Al. 31. Cl

110 FORMAT(ax. ' A* ', E9. 3. ' 3='.E9. 3, ' C=',E9. 3)
R1=MCUM 
R2=MCUM+MS 
Fl=Al-*-Bl*Rl**Cl 
F2=A1+B1*R2**C1 
TYPE 120. F1.F2

120 FORMAT(SX. ' XFIRST, XLAST*', 2F10. 4)
F1=C1*31
IF(Cl-1. 0. NE. 0. 0)F1=C1*B1*R1**(C1-1. )
F2=C1*31
IF( Cl-1. 0. NE. 0. 0)F2»C1*B1*R2**!C1-1. )
TYPE 130. FI. F2

130 FORMAT(ax, ' (DX/OR)FIRST, XLA3T=',2F10. 4)
RETURN
END

 o SUBROUTINE PRINTX<XO.MS.MCUM.DMAX, DM IN. IFIRST. JCALL)
PURPOSE - AT END QF RUN, PRINT VALUES OF X. R TO SCREEN 

COMMON/YALUES/XPLQT (200), JSE0<200), MMAX, KSEGOO). XL(361 )
COMMON/YALUE2/I ZONE, IU.Al.31,Cl,AA(50), 33(50), CC(SO). LEN(50) 
COMMON/CPLQT2/FTITLE,XPMIN.XPMAX.YPMIN.YPMAX,CHX.CHY 

C PRINT VALUES OF R,X
MMAX=MCUM 
M=0 
IU=3
CALL FOPEN(IU)
WRITE!IU. 305)M, XO 
WR ITE(5 ,305)M, XO 

305 FQRMAT(5X. 'R»'» 13, ' X=',F8. 3)
DO 310 M=l, MCUM
OX=XPLQT(M)-XPLOT(MAXO(1, M-l)>
IF(M. EQ. 1)DX=XPLQT(1)-X0 
WRITE(IU, 320 > M. XPLOT(M). DX 

310 TYPE 320.M,XPLOT(M),DX
320 F0RMAT(5X, 'R='> 13, ' X*',F8. 3. ' D*', F9. 3)

C WRITE SEGEMENT INPUTS TO FILE
WRITE(5.330)DMAX,DMIN,XO.JCALL,IFIRST 
WRITE(IU, 330)DMAX,DMIN.XO.JCALL, IFIRST 

330 FORMAT</, IX, 'DMAX=*', F3. 2. ' DMIN*', F9 2. X0=',F9. 3. JCALL*', 12,
1 ' IFIRST*'. 12)
WRITE<5,340)(KSEG< J), XL(J).J=l.JCALL)
WRITE!IU, 340)(KSEGCJ). XL(J).J*l. JCALL)

340 FORMAT(6(14,FB. 3))
WRITE!IU, 350)
WR I TE ( 5, 350)

350 FORMAT!IX)
C WRITE A. 3. C
400 URITE(5, 410) IZQNE, (LEN(I). 1*1. IZOf€)

WRITE!IU. 410)I ZONE, (LEN(I>. 1=1. IZQNE)
410 FORMAT<IX, 2113)

WRITE( 5. 420) ( A A <I),33(I).CC(I>, 1*1. I ZONE)
WRITE(IU. 420)(AA(I),SB(I).CC(I), 1*1, I ZONE)

420 F0RMAT(3(IX, E12. 6))
C CALL REGEN! IZONE, XE)
C CALL APLOT

RETURN 
END
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